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SUMMARY 
In this paper there is developed an operational procedure for deriving solutions of dual integral equations of a 
general type - equations (1.1) and (1.2) below. The method depends strongly on properties of the Mellin transform. 
To illustrate the application of the method solutions are derived of the elementary type of dual integral equations 
occurring in engineering applications. The method is then applied to the solution of dual integral equations of 
Titchmarsh type and to those involving Y- and K-transforms. 

1. Introduction 

Dual integral equations of the type 

o hl(xt)d?(t)dt = f(x), 

f o  h2(xt)q~(t)dt = g(x), 

O _ ~ x < l ,  (1.1) 

x > 1. (1.2) 

have been studied extensively and with various degrees of generality particularly when the 
kernels h I and h 2 involve the circular functions or the Bessel functions of the first kind. 
Many methods have been used to solve equations of this type in the hundred years since 
they were first considered by Weber. An account of these different methods is given in the 
introduction to the paper [1] and, at greater length, in Chapter IV of the book [2]. 

In this paper we first outline (in Sec. 2) a general technique for deriving solutions of 
equations of the general type (1.1) and (1.2). The method consists in exploiting the 
properties of the Mellin transform to reduce the problem to that of solving an integral 
equation of the first kind. A somewhat similar technique has been employed by Williams [3] 
and Tanno [4]. As in almost all of the papers concerned with the solution of dual integral 
equations, the analysis is purely formal. In other words we are not endeavouring to establish 
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116 C. Nasim and I. N. Sneddon 

solutions in a rigorous fashion, but merely to provide "candidates" for such a rigorous 
analysis. Our approach is the "operational approach" of the applied mathematician; any 
solutions found by a method of this kind must be subjected to the test of beiflg shown to 
satisfy the original equations. 

In Sec. 3 we apply the method to obtain the solutions of some of the dual integral 
equations which arise in some of the simpler mixed boundary value problems in elec- 
trostatics, elasticity and diffusion theory. The solutions are already known and the purpose 
of this section is merely to show the technique at work. In Sec. 4 we consider the problem of 
deriving the solution of Titchmarsh-type equations and in Sees. 5, 6 those of deriving 
solutions of dual integral equations whose kernels involve, respectively, Y- and K-functions. 
In using results concerning the Mellin transform we make use of Chapter 4 of [5]. 

2. Description of  the method 

The dual integral equations (1.1) and (1.2) are equivalent to the equations 

ml(t /x)x- l  dx hl(xu)d~(u)du = ~l(t), 0 < t < 1, 

m2(t/x)x-ldx h2(xu)d~(u)du = ~2(t), t > 1, 

where the functions ~'1 and ~'2 are defined in terms of the known functions f, 0 and the (as 
yet) arbitrary functions m 1, m 2 by the equations 

f l  f (x)ml( t /x)x- ldz '  0 < t < 1, (2.1) g/l(t) 

~2(t) = O(x)m2(t/x)x-ldx, t > 1. (2.2) 

Suppose now that we can find functions m~ and m 2 such that 

f l  ml(y)hl(z/y)y- l dy = f~ m2(Y)h2(z/y)y- ~ dy = k(z) (2.3) 

then the unknown function ~b is the solution of the integral equation 

oqb(u)k(ut)du = V(t) (2.4) 

where the function ~u is defined in terms of the functions ~'1 and ~2 through the equation 

g/(t) = g/l(t)H(1 - t) + ~2(t)H(t - 1), (2.5) 

H denoting the Heaviside unit function. 
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A general procedure for deriving solutions of  dual integral equations 117 

If we denote the Mellin transform of a function f by f*  - ~¢f, we see that we can write 
equations (2.3) and (2.4) in the equivalent forms 

m*(s)h*(s) = m*(s)h~(s) = k*(s) (2.6) 

and 

~b*(1 - s)k*(s) = ~u*(s) (2.7) 

respectively, where m*, m~' are defined by the equations 

m~(s) = sg[ml ( t )H( t  -- 1); s], m~(s) = J l[m2( t )H(1 - t); s]. (2.8) 

Alternatively we can write the unknown function in the form 

~b(u) -- -@'(u) (2.9) 

where q~ is the solution of the integral equation 

o qS(u)K(ut)du = t-l~//(t) (2.10) 

whose kernel K is defined by K = k' so that 

K*(s) = (1 - s)k*(s - 1). (2.11) 

Again by making use of elementary properties of the Mellin transform we can derive 
alternative forms for the component functions ~1 and ~2 occurring in equation (2.5). It is 
easily shown that if there exists a function m 3 such that 

~g[ma(t)H(t  - 1); s] = - s - l m ~ ( s  + 2) (2.12) 

then ~'1 can be expressed in the alternative form 

_ 1 d f ' x f (x )ma( t /x )dx"  g/1 (t) (2.13) 
t dt 3o 

Similarly, if there exists a function m 4 such that 

~[rn4( t )H(1  - t); s] = s - lm*( s  + 2) (2.14) 

then ~2 can be expressed by the formula 

f- 1 d xg(x)m4(t/x)dx" (2.15) 
qJ2(t ) -  t dt 
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3. Some  simple pairs of  dual integral equations 

We begin by applying the method to certain simple pairs of dual integral equations which 
arise frequently in applications. 

(i) I fhl(x ) -- cos x, h2(x ) = sin x, then 

h*(s) = F(s) cos (ans), h*(s) = F(s) sin (ans) (3.1) 

(Cf. pp. 317, 319 of Vol. 1 of [6]) so that, in this case, equation (2.5) reduces to 

F(as ) ~ F(- i - -is) 
r(~s + !)~ m*(s) - ~ - ~  rot(s). 

We may therefore take 

r (a)r (½ - as) n a ) r ( ½ s )  
m*(s) = 2F(1 _ 1  , 2F(½ + as) is ) m~(s) = , (3.2) 

i.e. we may take 

ml(t ) = (t 2 - 1 ) -½H(t  - 1), m2(t ) = (1 - t2)-½H(1 - t). (3.3) 

Further, from equations (2.6), (3.1) and (3.2) we deduce that the function k has Mellin 
transform k* defined by the equation 

k*(s)=l 2s-xr(½ s) 
~n r ( 1  - ½s) 

and hence that 

k(t) = ½nJo(t ). (3.4) 

Inserting this expression into equation (2.4) and solving the resulting integral equation by 
means  of  the Hanke l  inversion theorem (Cf. [5] ,  p. 309) we see that the pair of  dual integral 
equations 

roSa(t) cos(xt)dt = f(x), 0 < x < 1, 
(3.5) 

f ; o ( t )  sin = > 1, (xt)dt g(x), x 

has solution 

¢(t) 2tf~UJo(ut)dtf~ f(x)dx 2 t f ~  f~  g(x)dx = ~ -  x / ( u 2 - x 2 )  + ~ -  UJo(ut)du x/(~_--u2 ) (3.6) 
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A general procedure for deriving solutions of dual integral equations 

(ii) On the other hand if hl(x ) = sin x, hz(x ) = cos x, equation (2.5) reduces to 

r(½ + ½s) _ r(1 - ½s) m~(s) 
r (~s )  m*(s) r ( ~ -  ~s) 

which may be rewritten as 

r(~ + ~s) 
r(1  + ½s) m~(s) - 

F(-½s) m~(s). 
bsi- -- ~ F(~ - 2s) 

From this equation we see that we may take 

r(~)r(-~s) 
m*(s) - 2r(½ - ½s) ' m*(s) = - 

i.e. we may take 

mx(t ) = t(t 2 - 1 ) - ½ H ( t -  1), 

r(gr(~ + ~s) 
2r(1 + ~s) 

m2(t ) = t(1 - t2)-~H(1 - t). 

119 

q~(t) . . . .  2 d I l l  f2 f (x)dx n dt t Jo(ut)du _ _ + f ~ J o ( u t ) d u f ;  g(x)dx 1" (3.8) ~;~-u  2) 

Journal of Engineering Math., Vol. 12 (1978) 115-128 

(3.7) 
fo ° C~(t) (xt)dt = f(x), sin 

o° C~(t) cos (xt)dt = g(x), 

may be written in the form 

x > l ,  

O ~ x < l ,  

With this choice of m 1 and m 2 we deduce from equation (2.6) that the corresponding kernel 

k has Mellin transform k* defined by the equation 

2 5 - ~ / ' i f2+ ½s )n 
k*(s) = - s r ( ~  - ~s) 

From equation (2.10) we deduce that 

K * ( s )  = 1  . 2s-  l r ( ~  s) 

~ r ( 1  - ~s)  

and hence that 

K(t) = ½nJo(t). 

In other words we have shown that the solution of the dual integral equations 
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(iii) If  h 1 (x) = Jo(x), hE(X ) = J1 (x), then 

h*(s) = 25-1 F(ls)  F(1 + is)  
r (1  ½s) h*(s) = 2 s-1 

- ' r ( ~ -  ~s)  

so that  we m a y  take 

m~(s) F(½)F(1 - ½s) r(½)r(Is ) 
- ~ - - ~ -  m * ( s ) -  

2F(~  - ~s)  ' 2F(~  + ~s) 

which is equivalent  to taking 

ml(t) = (t 2 - 1)-½H(t  - 1), m2(t ) = (1 - t2)-½H(1 - t). 

The corresponding kernel has Mellin t ransform 

1 1 s - 2  1 ) F ( ~ s )  k*(s) = 2 s-2 F(~)F(~s) zc 2 F(-is 1 i 
r ( 3 _  18) r ( I s  _ 1  3 ~)r(~ - Is) r(½) 

= F(s - 1)sin {1(s - 1)~z} 

so that  

k(t) = t-1 sin t (3.9) 

and the corresponding integral equat ion  can be solved by means  of the inversion theorem 

for the Four ier  sine t ransform.  In this way we find that  the solution of the pair  of  dual 
integral equat ions 

f o  ~b(t)Jo(xt)dt = f(x) ,  <_ x < 1, 0 

(3.10) 

; e~(t)Jl(xt)dt = g(x), x > 1, 

can be written in the form 

 (t)=2tf usin(ut)duf  f(x )  d x + 2 t I ~ u s i n ( u t ) d u f ;  g(x)dx (3.11) 

(iv) If  h 1 (x) = 2 x -  1Jo(X), h2(x ) = Jo(X), then 

h*(s) 2 "- '  r ( I s - ± )  = 2 h1(s ) = 2"- '  r ( I s )  
e ( ~  - i s ) '  r ( 1  ' - ~s)  

and we m a y  take 

1 3 _ ½ s )  e ( ½ ) e ( ½ s  - ±) m * ( s ) -  F(2)r(2 m~(s) = 2 
2F(1 - I s )  ' 2F( Is  ) 
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Since 

d/g-~[-s-lm*(s + 2);t] = !(t2 - 1)-½H(t - 1) 2 

it follows from equations (2.12) and (2.13) that we may write 

1 d ~t x2f(x)dx 
~ l ( t ) -  2t dt J o x / ~ ) '  

Also 

m2(t ) = t- l (1 - t2)-~H(1 - t) 

so that 

1 i °~ xg(x)dx 

0 < t < l .  

t > l .  
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the pair of dual integral equations 

o t dp(t)Jo(xt)dt = fl(x), 

oC~(t)Jo(xt)dt = g2(x), 

may be written in the form 

~b(t)= 2t Ilcos(ut)du d ;~ xfl(x)dx 
T j o  ~-u x/(u--T _- x~) 

2t ~ f f  xg2(x)dx + - cos (ut)du 
,~ , / ( x  ~ - .~) 

O < x < l ,  ] 

x > l ,  / 

(3.13) 

(3.14) 
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Further, from equations (2.6), (3.9) and (3.10) we deduce that the kernel of the relevant 
integral equation has Mellin transform 

k*(s) 2s_ ~ r ( { s  - ! )  = z - F(s - 1) sin(½sr0 
r ( 1  - ½s) 

from which we deduce that 

k(t) = t -1 cos t. (3.12) 

The corresponding integral equation can be solved by means of the inversion theorem for 
the Fourier cosine transform to give 

c~(t) = __2t I °~ uN(u) cos (ut)du. 
7~ 30 

Making the substitution f(x) = 2x-lf~ (x) in these equations we see that the solution of 
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(v) If hi(x ) = Jo(x), hz(x ) = 2x-lJo(X), the roles of h 1 and h 2 are reversed and we may 
take 

r ( ~ ) r ( ~ s )  m*(s) = r ( ~ ) m  - ks) ' ' ~-e;-f- ~ -  m*(s) = 2r(5 - 5s)  ' 2 r ( l s  _ x) 

i.e. we may take 

ml(t ) = (t z - 1)-~t- lH(t  - 1), m4(t ) = ½(1 - t2)-~H(1 - t) 

and hence 

1 f l  xf(x)dx 0 < t < 1 
V,(t) = t x / ~  - x2) ' 

1 d ft ~ x2g(x)dx 
~'2(t) = 2t dt x/ (x  2 , t2) , t > 1. 

The kernel of the corresponding integral equat ion turns out to be given by equat ion (3.9). 
Solving the integral equation,  again by means of the inversion theorem for the Fourier  sine 
t ransform and replacing g ( x ) b y  2x-lg2(x) we find that  the solution of the dual integral 
equations 

; d?(t)Jo(xt)dt = f l  (x), 

o t -  l d~( t )Jo (x t )d t  = a s ( x ) ,  

is given by the equat ion 

0 < x < l ,  

x > l ,  

~( t )= 2t f~ sin(ut)au f ~ xfl(x)ax -;2) 

2, f2sin(u,)au a f; xo2(x)ax 
~du , / ( x  ~ _ u2) " 

4. Dual  integral equations of  Titehmarsh type 

We now consider the case in which 

hi(x ) = 22=x-Z=Jv(x), h2(x ) = 22Px-2aJu(x). 

r ( ~ v  - ~ + ~s) 

Here we have 

h~ (s) = 2 s-  1 
F(1 + ½v + ~ - ½s)' 
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h~ (s) = 2 ~-I 

(3.15) 

(3.16) 

(4.1) 

r ( ~ u  - fl + ~s) 
if(1 1 + ~u + f l -  ½s) 

(4.2) 
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In discussing this and subsequent cases it is convenient to introduce the Erdelyi-Kober 
operators I,.~ and K.~  defined for ~ > 0 by the equations 

2X-2~-2" f ]  I , J (x )  -- F(~) (x2 - t2)'-lt2"+ lf(t)dt' 

2X2. fro X2) ~- lt-2~- K , , f ( x )  = F(a~ (t 2 _ 27 +,f(t)dt 

and for a < 0 by the equations 

I~,J(x) = x -2"- \ 2x dx ] , , .+.a ,  ,. 

1 d x2._2,K~_.,~+.f(x) K , J ( x )  = ( -  1)"x 2" - ~  dx 

in which equations n is a positive integer such that 0 < cc + n < 1 (Cf. pp. 54-55 of [2]). It is 
easily shown that 

r(1 + ~ - ½s) f*(s), (4.3) 
~ ' l . , , f ( s )  = r(1 + ~ + • - ~ s )  

r (~  + Is) 
JItK,,~f(s) = F(tl + ~ + i s) f*(s). (4,4) 

It is also convenient to use S,,., the operator of the modified Hankel transform, defined by 
the equation 

S , . j ( x )  = 2~x -~ t 1 -~f(t)Jz~+~(xt)dt (4.5) 

from which we deduce immediately that 

Jb[S, =f(s) = 2 s-1 r ( r / +  ½s 2 , _ 
' F ( I + t / + ~ - u )  f * ( 2  s). (4.6) 

In equations (4.3), (4.4) and (4.6)f* denotes, as usua l J / f  
In the sequel we shall make use of the inversion formulae 

/ - x = / + ,  =; K - I = K + =  • S , . ~ = S , + ,  (4.7) 
, g  , - -  ? / , g  , - - g ~  , - - C t "  

For the forms (4.2) for h*, h~ we may take 

m*(s) = F(I + i v + ct - i s) m*(s) = F(½v - a + ½s) 
r(1 + '-~: + ¢ - I s ) '  r ( i ~  - ~ + Is) 

Journal of Enoineerin9 Math., Vol. 12 (1978) 115-128 



124 

from which, by using equations (4.3) and (4.4) we deduce that 

gtl(t ) = I~,+~,½u_½,_~+~f(t), 

~'2(t) = K~_, ,~_~+~_pg(t ) ,  

C. Nasim and I. N. Sneddon 

The corresponding expression for the Mellin transform of the kernel is 

k*(s) = 2 s- x F(½v - ~ + ½s) 
F(I + ½/z + fl - ½s) " 

Making use of equation (4.6) we see that the integral equation for ~ assumes the form 

s ~ . _ ~ , ~ . _ ~ . + ~ + ~ { u -  14 , (u);  t}  = ~ ( t ) .  

Using the third equation of the set (4.7) we deduce that 

ep(t) = ts~.+~, _~ .+~_._W( t ) .  

From the definition (4.5) we see that the solution can be written in the form 

~b(t) = 2-vt x +~ f o u l  +~,(u)J~(tu)du (4.10) 

with the parameters 7, 2 defined by the equations 

__ 1 I 1 1 7 - 3/2 - ~v + ~ + fl, 2 = ~/~ + ~v - a + fl (4.11) 

and the function ~, determined by the equations (2.5), (4.8) and (4.9). 
Replacing f(x) by 22~x-z~fl (x) and g(x) by 22Px-zPg2(x) we find that 

~l(t) = 22at-2~I½v,~_2,fl(t), 0 _< t < 1, (4.12) 

~ 2 ( t )  = 22~t-2~K~_~.~_2t~g2(t), t > 1. (4.13) 

and hence that the solution of the pair of dual integral equations 

f o  t- Z%(t)Jjxt)dt 0 < < 1, x 

(4.14) 

fot-E~d~(t)Jjxt)dt = > 1, gz(X), x 

is given by equation (4.10) with the function ~u defined by equations (2.5), (4.12) and (4.13). 
For example if 

- v > 21~ - ~1 
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0 _< t < 1, (4.8) 

t > 1. (4.9) 
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the solution can be written in the form 

q~(t) - F(7 - 2e) t l+' ul-~Ja(tu)du (u2 -x2) ' -a ' -~x~+Xfa(x)dx  

+ V(y2zo-' + ~ -  2fl) tl +' fTu +%(tu)du f; ( x 2 - u 2 ) y - 2 # - l x - U + l g 2 ( x ) d x "  (4.15) 

5. Dual integral equations involving Y-functions 

In the case in which hi(x ) = Y~(x), h2(x) = Y.(x), we have 

~-x 1 +2v)F(Es _iv ) h * ( s ) -  F(gs+71t)F(is-gt~ h*(s)= 2 F(U 1 1 1 2s-1 1 t a 1 ) 
1 1 1 3 1 1 ~ 1 1 1 3 1 1 ~/~ - ~s) ~)r(~ + F ( V  - -~v - ~ ) F ( ~  + ~v  - ~s)  F ( ~ s  - ~ - 

(Cf. p. 329 of Vol. I of [6]) so that we may take 

3 1 1 1 1 1 _ 1 )  - ~ s )  r ( I s  1 m ~ ( s ) -  F(2 + EV m * ( s ) =  + s v ) r ( ~ s - ~ v ) r ( ~ s - ~ / ~  2 
r (  3 4-12. - 2~11 ~''  r ( 1 s  .-[- ~ll )r(~s' _ l u ) r ( 1  s _ 11) _ 1_).2 

Hence we deduce that 

~l(t) = I½~+~,½._½,f(t), 0 <_ t < 1, 

I//2 (t) = t - u - ' -  1K~, +½. _½,+½.K½u+,+½.½u_½,K½,.½,_ ~.{x "+'+ ag(x); t}. 

Further, 

l r ( I s  1 ' - 11)) + ~ v ) r (  V 
k * ( S ) =  F ( I s _  ~ ~ 3 , 1 • - - ~s) ~v ~ ) r (~  + ~/~ 

It is easily shown that 

~tES_~,~,+,~+ ~I~,_~_~{x-14,(x); t}; s] = k*(s )4 )*(1  - s)  

and hence that ~b is the solution of the integral equation 

s_~,~.+~+~I~v,_v_~{x- '6(x) ;  t} = ~,(t). 

(5.1) 

(5.2) 

Making use of the formulae for the inverses of the I- and S-operators we deduce from this 
last equation that the solution of the pair of dual integral equations 

fo dp(t) Y~(xt)dt = f(x),  0 < x < 1, 

(5.3) 

)(t)Yu(xt)dt = #(x). x > 1. 
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may be written in the form 

c~(t) = tI_½,_~,~+~S½~+½, _½u_½v_½~u(t) (5.4) 

where ~r(t) = ~/l(t)H(1 - t) + ~/2(t)H(t - 1)is given by equations (5.1)and (5.2). 
The solution (4.4) when written out  in conventional  form is 

2 ½ - ~ - ~ v  
4)(t)- F(v + l) fi (t2 -~zY-*~*"-~V+'d~ fo z~t~+½"+~J½u_½~+½(~z)~(r)dz. (5.5) 

For  example, if we take v = 0,/~ = 1, f ( x )  - 1, 0 < x < 1, g(x)  - 0, x > 1 we find that 

~u(t) = ~xfztH(1 - t) and hence that  

gb(t) = ½ x / ~  z2J,(~z)dz. 

Recalling the formula 

~ z 2 J l ( ~ z ) d z  = J2(~)/~ 

we see that 

0 2 x-½ J2(x½) dx 

and hence, making use of the formula (59) on p. 194 of Vol. 2 of [6], we deduce that  

~b(t) = ¼~{J,(½t)) 2 (5.6) 

is the solution of the pair of dual integral equat ions 

f odp ( t )Yo (x t )d t  = 1, < x < 1, 0 

(5.7) 

f o O ( t ) Y l ( X t ) d t  = O, x > 1. 

C. Nas im and I. N.  Sneddon 

6. Dual integral equations involving K-functions 

If we take h 1 (x) = K~(x), h2(x ) = Ks(x ), then we have 

h,(s )  = 2s- 2 1 F(~s 1 1 1 r(~s-~v)r(~s +Iv), h*(s) = 2 s-2 ' - ~ ) r ( ~ s  + ~ ) .  

(Cf. formula (26) p. 331 of Vol. I of [6]). We may therefore take 
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from which we deduce immediately that 

Also 

Using the results 

we see that 

From this we deduce immediately that the solution of the dual integral equations 

where Z is the solution of the integral equation 

with q7 defined by the equation 

gq and ~ff2 being given by equations (6.1) and (6.2). 
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The solution of the integral equation (6.5) is well known; it is obtained immediately by 
applying the inversion formula for the K-transforms introduced by Meijer [7]. 
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